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The dynamics on the final constraint submanifold of  a constrained system is 
discussed: a system of  equations of motion is induced by the initial ones, whose 
consistency originates this submanifold, and there is also a dynamics which is 
the geometrically natural one of this (presymplectic) submanifold. Their compati- 
bility and possible equivalence are analyzed. As a consequence, another jus- 
tification of  Dirac's conjecture is obtained. 

It is well known that one of the essential characteristics of constrained 
dynamical systems is that, in general, the final phase space (i.e., the set of 
the dynamical states) is not the initial phase space, but a submanifold of 
it (Dirac, 1964; Gotay et al., 1978). As several authors have shown 
(Lichnerowicz, 1975; Gotay et al., 1978; Gomis et al., 1984; Carifiena et aL, 
1985), this submanifold admits several kinds of alternative equations of 
motion which are compatible with the starting dynamics. The aim of this 
paper is to compare some of these alternatives, discussing their possible 
equivalence and its consequences. 

In the Hamiltonian as well as in the Lagrangian formulation of 
mechanics for nonregular systems, the initial phase space is a presymplectic 
manifold (Mo, 090) [i.e., tOo ~ Z2(Mo) is a degenerate form of constant rank, 
where ZP(Mo) denotes the set of closed p-forms in Mo]. This Mo can be a 
submanifold of an ambient symplectic manifold, as happens, for instance, 
in the Hamiltonian formulation of Dirac's theory of constrained systems 
(Dirac, 1964), where jo: M o ~  T*Q (jo is an imbedding) and Mo is called 
the primary constraint submanifold, where tOo =jo*f~ (f~ denotes the natural 
symplectic structure of T 'Q) .  
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The equations of motion are obtained by generalizing the regular case. 
Thus, from ao~ ZI(Mo) (rank So = const), we write in compact notation 

i(Xo)o2o = So; XosX(Mo) (1) 

where i(Xo)r means the contraction of Xo and r Here So may be locally 
expressed as So = dho, with hoe C~ The triad (Mo, r So) is called 
a presymplectic, locally Hamiltonian system (plHs), with locally Hamiltonian 
canonical function ho. 

A first consequence of the degeneracy of O9o is that, in general, equations 
(1) are not compatible everywhere in Mo. This forces us to use algorithmic 
procedures in order to determine the submanifold of Mo where such 
equations are compatible and have consistent solutions (Dirac, 1964; Gotay 
et al., 1978). If  such a submanifold i': C ~ Mo exists, it is called the :final 
constraint submanifold (fcs) and the equations 

(i(Xo)o~o- ~o)lc = 0 (2) 

are compatible and have consistent solutions Xo ~ x(C),  where X(C) is the 
set of vector fields of X(Mo) tangent to C. The fcs (C, r is presymplectic 
in general, and roc = f*OJo. Then, any triad (P, C, 12) such that j :  C ~ P and 
(P, 12) is a symplectic manifold is called a canonical system associated to 
the plHs (Mo, r so) (Sniatycki, 1974; Carifiena et aL, 1985) (the existence 
of such a symplectic manifold (P, 12) is always assured for every presymplec- 
tic manifold (Gotay, 1982; Marie, 1983). 

Degeneracy of OJo has another consequence: nonuniqueness of the 
solutions of (2). In fact, if Xo is a solution, then X0 + Z is another possible 
solution VZ c Ker r n X(C) -= G ~ Following the terminology of Gotay and 
Nester (1979) and Bergvelt and de Kerf (1986), we call the solutions of (2) 
gauge equivalent vector:fields, and all the points in the fcs that are reached 
starting from the same initial condition by means of integral curves of these 
fields, in the same lapsus of the evolution parameter, are gauge equivalent 
points (and it is assumed they represent dynamically equivalent physical 
states). Finally, the vector fields whose integral curves are made up by gauge 
.equivalent points are called gauge vector fields (gvf), and it is obvious that 
they must be tangent to C. 

Although all the elements of G o are gvf, they do not exhaust the set 
of gvf. There exists an algorithmic procedure (Gotay and Nester, 1979; 
Bergvelt and de Kerf, 1986), which, starting from G ~ leads to a final set 
G which contains all the gvf of the theory. Obviously G c x(C).  

Equations (2) are relations "at support" on C; that is, they only hold 
on the points belonging to the submanifold C of Mo (sometimes, in physical 
language, they are called "weak equalities" on C). These equations are 
induced on C by the plHs (Mo, r Cr Nevertheless, other dynamics 
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(which are the natural ones of the fcs because they are exclusively related 
to the geometry of the fcs) may be independently defined in C. In fact, 
since toc is presymplectic in general, giving a closed 1-form/3 0 ~ Z I(C), we 
can stablish equations of motion in C in the following way: 

i( Xc )tOc =/3c; Xc ~ x( C ) (3) 

with /3c = dhc locally for any hc ~ C~176 The necessary and sufficient 
condition for this system to be compatible is L(Ker ~c)/3c =0 (where L 
denotes the Lie derivative). These equations can be related to the system 
(Mo, C, tOo) (or, when appropriate, to any canonical system (P, C, t2) associ- 
ated to the plHs by introducing vector fields Xo ~ X(Mo) such that ~,Xc = 
Xo[c [resp. X ~ x( C) such that j , X c  = XIc] and 1-forths/30 ~ AI(Mo) such 
that i'*/3o =/3c [resp./3 ~ AI(P) such that j*/3 =/3c]. Therefore (3) may be 
written alternatively as 

~'*(i(Xo)tOo-13o) = 0 [locally/3o = dho for any ho 6 C~(Mo)] . (4) 

j*(i(X)FI-/3)  = 0 [locally/3 = dh for any 11 6 C~(P)]  

We say then that (Mo, tOo, Xo) [or (P, ~,  X)] are weak, locally Hamiltonian 
systems (wIHs) relative to C, and Xc is a locally Hamiltonian field in C. 

This way of defining the dynamics in C is equivalent to the one given 
by Lichnerowicz (1975). In addition, equations (3) allow us to formulate a 
theory of canonical transformations for presymplectic systems (Gomis 
et al., 1984; Carifiena et al., 1985). This is due to the essential fact that these 
dynamics are just those leaving invariant the geometrical structure a~c in 
C. In fact: L 

Theorem. A necessary and sufficient condition for (Mo, Wo, Xo) [or, 
when appropriate, (P, l), X)] being a wlHs relative to C is that toc be an 
absolute invariant form under Xc; that is, 

0 = L(Xc)to c = ~*(L(Xo)OJo) =j*(L(X)~I) 

In turn, this condition is equivalent to demanding that the Poincard integral 
associated to Xc be invariant under Xc; that is, if D c C is a 2-domain of 
integration and {F,} denotes the uniparametric local group of diffeomorph- 
isms generated by Xc,  we have 

toC = 0  

What this theorem means is that equations (3) may be obtained from 
a variational principle [for equations (2) this is not possible]. So, the 
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preceding result generalizes previous results in a geometrical way (Benavent 
and Gomis, 1979; Dominici and Gomis, 1980, 1982). 

Next we want to study the relation between both kinds of dynamics 
in C: the induced one (2) and the geometrical ones (4). A first conclusion 
is that, taking any flo such that f*/3o = i'*ao, then every Xo c X(Mo) solution 
of (2) is also a solution of  (4), and therefore (2) is a particular case of (4). 
On the other hand, if we analyze the gauge content of the dynamical theory 
given by (4), we have that all the gvf are known from the beginning and 
exhaust Ker Wc (we denote by Ker Wc an extension to Mo of Ker tOc; that 
is, we have f .  Ker tOc = Ker Wclc), which is the gauge group obtained in 
the canonical transformations theory for constrained systems (Carifiena et 
al., 1985). On the contrary, the set G of gvf of  the dynamics (2) is such 
that G c Ker Wc. 

It would be very interesting if G = Ker toc, because in such a case we 
would have assured that: (a) The induced dynamics (2) is completely 
equivalent to any of the natural ones (4), in particular to the one satisfying 
/3c = f*ao; (b) the gauge degrees of freedom and the degrees of degeneracy 
of the presymplectic structure of C are identical. 

/ 

This problem has been solved by Gotay and Nester (1978), who prove 
that, in the Hamiltonian formalism, both sets coincide if and only if every 
first-class secondary constraint ~" is an effective constraint, that is, it satisfies 
d lc # o. 

At this point there are some important questions to be pointed out. In 
relation to comment (a), note that the equivalence between the dynamics 
(2) and (4) implies the validity of  Dirac's conjecture (Dirac, 1964) and 
conversely. Therefore, the acceptance of this conjecture is justified whenever 
the condition of Gotay and Nester is satisfied. On the other hand, and 
related to comment (b), it is known that a way to eliminate the degeneraracy 
of  the presymplectic structure Wc is to go to the reduced phase space (rps) 
(Lichnerowicz, 1975), which is obtained from (C, tOc) by performing the 
quotient of C by the foliation generated by the involutive distribution 
Ker tOc. Then, if we have assured the identification G = Ker tOc, this pro- 
cedure allows one to eliminate both degeneracy and the physically irrelevant 
gauge freedom. 

Summing up, we can conclude that the dynamics induced by a pills 
on its fcs is equivalent to any of the geometrically natural ones that can be 
defined in it by imposing the invariance of the Poincar6 integral if, and 
only if, Dirac's conjecture is accepted. (In turn, the validity of this conjecture 
is equivalent to the nonexistence of ineffective first-class secondary con- 
straints; this means that, if they appear, they must be substituted by 
equivalent effective ones). In addition, in this way, the reduction procedure 
to the rps eliminates degeneracy and gauge freedom at the same time. 
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